Ao calcular uma média móvel em execução, colocar a média no período de tempo médio faz sentido No exemplo anterior, calculamos a média dos primeiros 3 períodos de tempo e colocamos ao lado do período 3. Poderíamos ter colocado a média no meio do Intervalo de tempo de três períodos, isto é, ao lado do período 2. Isso funciona bem com períodos de tempo estranhos, mas não tão bons para períodos de tempo iguais. Então, onde colocamos a primeira média móvel quando M 4 Tecnicamente, a Média Móvel cairá em t 2,5, 3,5. Para evitar este problema, suavizamos as MAs usando M 2. Assim, suavizamos os valores suavizados. Se usarmos um número par de termos, devemos suavizar os valores suavizados. A tabela a seguir mostra os resultados usando M 4. O Guia de cientistas e engenheiros para Processamento de sinal digital Por Steven W. Smith, Ph. D. Capítulo 15: Filtros médios móveis Parentes do Filtro médio móvel Em um mundo perfeito, os designers de filtros só precisam lidar com informações codificadas de domínio do tempo ou domínio, mas nunca uma mistura dos dois no mesmo sinal. Infelizmente, existem algumas aplicações em que ambos os domínios são simultaneamente importantes. Por exemplo, os sinais de televisão se enquadram nesta categoria desagradável. As informações de vídeo são codificadas no domínio do tempo, ou seja, a forma da forma de onda corresponde aos padrões de brilho na imagem. No entanto, durante a transmissão, o sinal de vídeo é tratado de acordo com sua composição de freqüência, como sua largura de banda total, como as ondas de suporte para cor de amplificador de som são adicionadas, restauração de amplificação de eliminação do componente de CC, etc. Como outro exemplo, interferência eletromagnética É melhor entendido no domínio da frequência, mesmo que a informação dos sinais seja codificada no domínio do tempo. Por exemplo, o monitor de temperatura em uma experiência científica pode estar contaminado com 60 hertz das linhas de energia, 30 kHz de uma fonte de alimentação de comutação ou 1320 kHz de uma estação de rádio AM local. Parentes do filtro de média móvel têm melhor desempenho de domínio de freqüência e podem ser úteis nestas aplicações de domínio misto. Os filtros médios móveis de passagem múltipla envolvem passar o sinal de entrada através de um filtro médio móvel duas ou mais vezes. A Figura 15-3a mostra o núcleo global de filtro resultante de uma, duas e quatro passagens. Duas passagens equivalem a usar um kernel de filtro triangular (um kernel de filtro retangular convolvido com ele próprio). Após quatro ou mais passagens, o kernel de filtro equivalente parece um Gaussiano (lembre-se do Teorema do Limite Central). Conforme mostrado em (b), as passagens múltiplas produzem uma resposta de passo em forma de S, em comparação com a linha reta da única passagem. As respostas de freqüência em (c) e (d) são dadas pela Eq. 15-2 multiplicado por si mesmo por cada passagem. Ou seja, cada vez que a convolução do domínio resulta em uma multiplicação dos espectros de freqüência. A Figura 15-4 mostra a resposta de freqüência de dois outros parentes do filtro médio móvel. Quando um Gaussiano puro é usado como um kernel de filtro, a resposta de freqüência também é gaussiana, conforme discutido no Capítulo 11. O gaussiano é importante porque é a resposta de impulso de muitos sistemas naturais e manmados. Por exemplo, um breve pulso de luz que entra em uma longa linha de transmissão de fibra óptica sairá como um pulso gaussiano, devido aos diferentes caminhos captados pelos fótons dentro da fibra. O kernel de filtro gaussiano também é usado extensivamente no processamento de imagens porque possui propriedades únicas que permitem rápidas ondulações bidimensionais (ver Capítulo 24). A segunda resposta de freqüência na Fig. 15-4 corresponde ao uso de uma janela Blackman como um kernel de filtro. (A janela do termo não tem significado aqui é simplesmente parte do nome aceito desta curva). A forma exata da janela Blackman é dada no Capítulo 16 (Eq. 16-2, Fig. 16-2) no entanto, parece muito com um gaussiano. Como esses parentes do filtro de média móvel melhor do que o filtro de média móvel em si. Três maneiras: primeiro e mais importante, esses filtros possuem melhor atenuação de parada do que o filtro de média móvel. Em segundo lugar, os grãos de filtro se estreitam para uma amplitude menor perto das extremidades. Lembre-se de que cada ponto no sinal de saída é uma soma ponderada de um grupo de amostras da entrada. Se o kernel do filtro diminui, as amostras no sinal de entrada que estão mais distantes recebem menos peso do que as próximas. Em terceiro lugar, as respostas passo a passo são curvas suaves, em vez da linha direta abrupta da média móvel. Esses dois últimos geralmente são de benefício limitado, embora você possa encontrar aplicativos onde eles são vantagens genuínas. O filtro de média móvel e seus parentes são quase iguais ao reduzir o ruído aleatório enquanto mantém uma resposta passo a passo. A ambigüidade reside na forma como o tempo de subida da resposta passo é medido. Se o tempo de subida for medido de 0 a 100 da etapa, o filtro médio móvel é o melhor que você pode fazer, como mostrado anteriormente. Em comparação, medir o tempo de subida de 10 a 90 torna a janela Blackman melhor do que o filtro de média móvel. O argumento é que isso é apenas uma disputa teórica que consideram esses filtros iguais neste parâmetro. A maior diferença nesses filtros é a velocidade de execução. Usando um algoritmo recursivo (descrito em seguida), o filtro de média móvel será executado como um raio em seu computador. Na verdade, é o filtro digital mais rápido disponível. Várias passagens da média móvel serão correspondentemente mais lentas, mas ainda muito rápidas. Em comparação, os filtros gaussianos e negros são terrivelmente lentos, porque devem usar convolução. Pense em um fator de dez vezes o número de pontos no kernel de filtro (com base na multiplicação sendo cerca de 10 vezes mais lento do que a adição). Por exemplo, espere que um gaussiano de 100 pontos seja 1000 vezes mais lento do que uma média móvel usando recursão.
No comments:
Post a Comment